Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142637

RESUMO

BACKGROUND: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS: Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING: UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.


Assuntos
COVID-19 , Lesão Pulmonar , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Lesão Pulmonar/patologia , Células Endoteliais , SARS-CoV-2 , Pulmão/patologia
2.
J Clin Pathol ; 76(7): 457-462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35039447

RESUMO

AIMS: Widespread disruption of healthcare services and excess mortality not directly attributed to COVID-19 occurred between March and May 2020. We undertook the first UK multicentre study of coroners' autopsies before and during this period using postmortem reports. METHODS: We reviewed reports of non-forensic coroners' autopsies performed during the first COVID-19 lockdown (23 March to 8 May 2020), and the same period in 2018. Deaths were categorised as natural non-COVID-19, COVID-19-related, non-natural (suicide, drug and alcohol-related, traumatic, other). We provided opinion regarding whether delayed access to medical care or changes in behaviour due to lockdown were a potential factor in deaths. RESULTS: Seven centres covering nine coronial jurisdictions submitted a total of 1100 coroners' autopsies (498 in 2018, 602 in 2020). In only 54 autopsies was death attributed to COVID-19 (9%). We identified a significant increase in cases where delays in accessing medical care potentially contributed to death (10 in 2018, 44 in 2020). Lockdown was a contributing factor in a proportion of suicides (24%) and drug and alcohol-related deaths (12%). CONCLUSIONS: Postmortem reports have considerable utility in evaluating excess mortality due to healthcare and wider societal disruption during a pandemic. They provide information at an individual case level that is not available from assessment of death certification data. Detailed evaluation of coroners' autopsy reports, supported by appropriate regulatory oversight, is recommended to mitigate disruption and indirect causes of mortality in future pandemics. Maintaining access to healthcare, including substance misuse and mental health services, is an important consideration.


Assuntos
COVID-19 , Suicídio , Humanos , Autopsia , Causas de Morte , Controle de Doenças Transmissíveis , Médicos Legistas , Estudos Multicêntricos como Assunto , Pandemias
3.
ERJ Open Res ; 8(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36575708

RESUMO

Background: Post mortem examination of lung and heart tissue has been vital to developing an understanding of COVID-19 pathophysiology; however studies to date have almost uniformly used tissue obtained from hospital-based deaths where individuals have been exposed to major medical and pharmacological interventions. Methods: In this study we investigated patterns of lung and heart injury from 46 community-based, pre-hospital COVID-19-attributable deaths who underwent autopsy. Results: The cohort comprised 22 females and 24 males, median age 64 years (range 19-91) at time of death with illness duration range 0-23 days. Comorbidities associated with poor outcomes in COVID-19 included obesity (body mass index >30 kg·m-2) in 19 out of 46 cases (41.3%). Diffuse alveolar damage in its early exudative phase was the most common pattern of lung injury; however significant heterogeneity was identified with bronchopneumonia, pulmonary oedema consistent with acute cardiac failure, pulmonary thromboembolism and microthrombosis also identified and often in overlapping patterns. Review of clinical records and next of kin accounts suggested a combination of unexpectedly low symptom burden, rapidly progressive disease and psychosocial factors may have contributed to a failure of hospital presentation prior to death. Conclusions: Identifying such advanced acute lung injury in community-based deaths is extremely unusual and raises the question why some with severe COVID-19 pneumonitis were not hospitalised. Multiple factors including low symptom burden, rapidly progressive disease trajectories and psychosocial factors provide possible explanations.

4.
Phys Rev Lett ; 128(24): 245301, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776473

RESUMO

We experimentally realize a spin-momentum lattice with a homogeneously trapped Fermi gas. The lattice is created via cyclically rotated atom-laser couplings between three bare atomic spin states, and are such that they form a triangular lattice in a synthetic spin-momentum space. We demonstrate the lattice and explore its dynamics with spin- and momentum-resolved absorption imaging. This platform will provide new opportunities for synthetic spin systems and the engineering of topological bands. In particular, the use of three spin states in two spatial dimensions would allow the simulation of synthetic magnetic fields of high spatial uniformity, which would lead to ultranarrow Chern bands that support robust fractional quantum Hall states.

5.
Lancet Respir Med ; 10(1): 95-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871544

RESUMO

The lungs are the main site that is affected in severe COVID-19, and post-mortem lung tissue provides crucial insights into the pathophysiology of severe disease. From basic histology to state-of-the-art multiparameter digital pathology technologies, post-mortem lung tissue provides snapshots of tissue architecture, and resident and inflammatory cell phenotypes and composition at the time of death. Contrary to early assumptions that COVID-19 in the lungs is a uniform disease, post-mortem findings have established a high degree of disease heterogeneity. Classic diffuse alveolar damage represents just one phenotype, with disease divisible by early and late progression as well as by pathophysiological process. A distinct lung tissue state occurs with secondary infection; extrapulmonary causes of death might also originate from a pathological process in the lungs linked to microthrombosis. This heterogeneity of COVID-19 lung disease must be recognised in the management of patients and in the development of novel treatment strategies.


Assuntos
COVID-19 , Pulmão , Autopsia , COVID-19/imunologia , COVID-19/patologia , Fósseis , Humanos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Gravidade do Paciente , SARS-CoV-2
6.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233871

RESUMO

Excitonic insulators host a condensate of electron-hole pairs at equilibrium, giving rise to collective many-body effects. Although several materials have emerged as excitonic insulator candidates, evidence of long-range coherence is lacking and the origin of the ordered phase in these systems remains controversial. Here, using ultrafast pump-probe microscopy, we investigate the possible excitonic insulator Ta2NiSe5 Below 328 K, we observe the anomalous micrometer-scale propagation of coherent modes at velocities of ~105 m/s, which we attribute to the hybridization between phonon modes and the phase mode of the condensate. We develop a theoretical framework to support this explanation and propose that electronic interactions provide a substantial contribution to the ordered phase in Ta2NiSe5 These results allow us to understand how the condensate's collective modes transport energy and interact with other degrees of freedom. Our study provides a unique paradigm for the investigation and manipulation of these properties in strongly correlated materials.

7.
Phys Rev Lett ; 126(6): 060402, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635703

RESUMO

We study the decay mechanism of the gapped lowest-lying axial excitation of a quasipure atomic Bose-Einstein condensate confined in a cylindrical box trap. Owing to the absence of accessible lower-energy modes, or direct coupling to an external bath, this excitation is protected against one-body (linear) decay, and the damping mechanism is exclusively nonlinear. We develop a universal theoretical model that explains this fundamentally nonlinear damping as a process whereby two quanta of the gapped lowest excitation mode couple to a higher-energy mode, which subsequently decays into a continuum. We find quantitative agreement between our experiments and the predictions of this model. Finally, by strongly driving the system below its (lowest) resonant frequency, we observe third-harmonic generation, a hallmark of nonlinear behavior.

8.
Emerg Med J ; 38(10): 798-802, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32883753

RESUMO

Ninety-six people died following a crowd crush at the Hillsborough Football Stadium, Sheffield, UK in 1989. The cause of death in nearly all cases was compression asphyxia. The clinical and pathological features of deaths encountered in crowds are discussed with a particular focus on the Hillsborough disaster.


Assuntos
Asfixia/etiologia , Incidentes com Feridos em Massa/estatística & dados numéricos , Pressão/efeitos adversos , Asfixia/fisiopatologia , Causas de Morte , Aglomeração/psicologia , Humanos , Instalações Esportivas e Recreacionais/organização & administração , Instalações Esportivas e Recreacionais/estatística & dados numéricos
9.
Inhal Toxicol ; 32(13-14): 468-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33179563

RESUMO

OBJECTIVE: The inhalation of air-borne toxicants is associated with adverse health outcomes which can be somewhat mitigated by enhancing endogenous anti-oxidant capacity. Carnosine is a naturally occurring dipeptide (ß-alanine-L-histidine), present in high abundance in skeletal and cardiac muscle. This multi-functional dipeptide has anti-oxidant properties, can buffer intracellular pH, chelate metals, and sequester aldehydes such as acrolein. Due to these chemical properties, carnosine may be protective against inhaled pollutants which can contain metals and aldehydes and can stimulate the generation of electrophiles in exposed tissues. Thus, assessment of carnosine levels, or levels of its acrolein conjugates (carnosine-propanal and carnosine-propanol) may inform on level of exposure and risk assessment. METHODS: We used established mass spectroscopy methods to measure levels of urinary carnosine (n = 605) and its conjugates with acrolein (n = 561) in a subset of participants in the Louisville Healthy Heart Study (mean age = 51 ± 10; 52% male). We then determined associations between these measures and air pollution exposure and smoking behavior using statistical modeling approaches. RESULTS: We found that higher levels of non-conjugated carnosine, carnosine-propanal, and carnosine-propanol were significantly associated with males (p < 0.02) and those of Caucasian ethnicity (p < 0.02). Levels of carnosine-propanol were significantly higher in never-smokers (p = 0.001) but lower in current smokers (p = 0.037). This conjugate also demonstrated a negative association with mean-daily particulate air pollution (PM2.5) levels (p = 0.01). CONCLUSIONS: These findings suggest that urinary levels of carnosine-propanol may inform as to risk from inhaled pollutants.


Assuntos
Aldeídos/urina , Carnosina/urina , Exposição por Inalação , Fumar/urina , 1-Propanol/urina , Adulto , Poluentes Atmosféricos/farmacocinética , Aldeídos/farmacocinética , Monitoramento Biológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/metabolismo
10.
PLoS Comput Biol ; 16(10): e1008338, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33079938

RESUMO

Over the past two decades, researchers have discovered a special form of alternative splicing that produces a circular form of RNA. Although these circular RNAs (circRNAs) have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of current studies has been on the tissue-specific circRNAs that exist only in one tissue but not in other tissues or on the disease-specific circRNAs that exist in certain disease conditions, such as cancer, but not under normal conditions. This approach was conducted in the relative absence of methods that analyze a group of common circRNAs that exist in both conditions, but are more abundant in one condition relative to another (differentially expressed). Studies of differentially expressed circRNAs (DECs) between two conditions would serve as a significant first step in filling this void. Here, we introduce a novel computational tool, seekCRIT (seek for differentially expressed CircRNAs In Transcriptome), that identifies the DECs between two conditions from high-throughput sequencing data. Using rat retina RNA-seq data from ischemic and normal conditions, we show that over 74% of identifiable circRNAs are expressed in both conditions and over 40 circRNAs are differentially expressed between two conditions. We also obtain a high qPCR validation rate of 90% for DECs with a FDR of < 5%. Our results demonstrate that seekCRIT is a novel and efficient approach to detect DECs using rRNA depleted RNA-seq data. seekCRIT is freely downloadable at https://github.com/UofLBioinformatics/seekCRIT. The source code is licensed under the MIT License. seekCRIT is developed and tested on Linux CentOS-7.


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Circular , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Biologia Computacional , Bases de Dados Genéticas , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Ratos , Software
11.
Phys Rev Lett ; 124(4): 040401, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058773

RESUMO

We uncover a topological classification applicable to open fermionic systems governed by a general class of Lindblad master equations. These "quadratic Lindbladians" can be captured by a non-Hermitian single-particle matrix which describes internal dynamics as well as system-environment coupling. We show that this matrix must belong to one of ten non-Hermitian Bernard-LeClair symmetry classes which reduce to the Altland-Zirnbauer classes in the closed limit. The Lindblad spectrum admits a topological classification, which we show results in gapless edge excitations with finite lifetimes. Unlike previous studies of purely Hamiltonian or purely dissipative evolution, these topological edge modes are unconnected to the form of the steady state. We provide one-dimensional examples where the addition of dissipators can either preserve or destroy the closed classification of a model, highlighting the sensitivity of topological properties to details of the system-environment coupling.

12.
BMC Genomics ; 21(1): 75, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992223

RESUMO

BACKGROUND: High-throughput RNA sequencing (RNA-seq) has evolved as an important analytical tool in molecular biology. Although the utility and importance of this technique have grown, uncertainties regarding the proper analysis of RNA-seq data remain. Of primary concern, there is no consensus regarding which normalization and statistical methods are the most appropriate for analyzing this data. The lack of standardized analytical methods leads to uncertainties in data interpretation and study reproducibility, especially with studies reporting high false discovery rates. In this study, we compared a recently developed normalization method, UQ-pgQ2, with three of the most frequently used alternatives including RLE (relative log estimate), TMM (Trimmed-mean M values) and UQ (upper quartile normalization) in the analysis of RNA-seq data. We evaluated the performance of these methods for gene-level differential expression analysis by considering the factors, including: 1) normalization combined with the choice of a Wald test from DESeq2 and an exact test/QL (Quasi-likelihood) F-Test from edgeR; 2) sample sizes in two balanced two-group comparisons; and 3) sequencing read depths. RESULTS: Using the MAQC RNA-seq datasets with small sample replicates, we found that UQ-pgQ2 normalization combined with an exact test can achieve better performance in term of power and specificity in differential gene expression analysis. However, using an intra-group analysis of false positives from real and simulated data, we found that a Wald test performs better than an exact test when the number of sample replicates is large and that a QL F-test performs the best given sample sizes of 5, 10 and 15 for any normalization. The RLE, TMM and UQ methods performed similarly given a desired sample size. CONCLUSION: We found the UQ-pgQ2 method combined with an exact test/QL F-test is the best choice in order to control false positives when the sample size is small. When the sample size is large, UQ-pgQ2 with a QL F-test is a better choice for the type I error control in an intra-group analysis. We observed read depths have a minimal impact for differential gene expression analysis based on the simulated data.


Assuntos
Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Método de Monte Carlo , Neoplasias/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
13.
Phys Rev Lett ; 125(24): 240404, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412034

RESUMO

We show that a simple experimental setting of a locally pumped and lossy array of two-level quantum systems can stabilize states with strong long-range coherence. Indeed, by explicit analytic construction, we show there is an extensive set of steady-state density operators, from minimally to maximally entangled, despite this being an interacting open many-body problem. Such nonequilibrium steady states arise from a hidden symmetry that stabilizes Bell pairs over arbitrarily long distances, with unique experimental signatures. We demonstrate a protocol by which one can selectively prepare these states using dissipation. Our findings are accessible in present-day experiments.

14.
Elife ; 82019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31547906

RESUMO

Outer hair cells (OHCs) in the mammalian ear exhibit electromotility, electrically driven somatic length changes that are thought to mechanically amplify sound-evoked vibrations. For this amplification to work, OHCs must respond to sounds on a cycle-by-cycle basis even at frequencies that exceed the low-pass corner frequency of their cell membranes. Using in vivo optical vibrometry we tested this theory by measuring sound-evoked motility in the 13-25 kHz region of the gerbil cochlea. OHC vibrations were strongly rectified, and motility exhibited first-order low-pass characteristics with corner frequencies around 3 kHz- more than 2.5 octaves below the frequencies the OHCs are expected to amplify. These observations lead us to suggest that the OHCs operate more like the envelope detectors in a classical gain-control scheme than like high-frequency sound amplifiers. These findings call for a fundamental reconsideration of the role of the OHCs in cochlear function and the causes of cochlear hearing loss.


Assuntos
Movimento Celular , Células Ciliadas Auditivas Externas/fisiologia , Animais , Gerbillinae , Audição
15.
Stat Appl Genet Mol Biol ; 18(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667368

RESUMO

High throughput RNA sequencing (RNA-seq) technology is increasingly used in disease-related biomarker studies. A negative binomial distribution has become the popular choice for modeling read counts of genes in RNA-seq data due to over-dispersed read counts. In this study, we propose two explicit sample size calculation methods for RNA-seq data using a negative binomial regression model. To derive these new sample size formulas, the common dispersion parameter and the size factor as an offset via a natural logarithm link function are incorporated. A two-sided Wald test statistic derived from the coefficient parameter is used for testing a single gene at a nominal significance level 0.05 and multiple genes at a false discovery rate 0.05. The variance for the Wald test is computed from the variance-covariance matrix with the parameters estimated from the maximum likelihood estimates under the unrestricted and constrained scenarios. The performance and a side-by-side comparison of our new formulas with three existing methods with a Wald test, a likelihood ratio test or an exact test are evaluated via simulation studies. Since other methods are much computationally extensive, we recommend our M1 method for quick and direct estimation of sample sizes in an experimental design. Finally, we illustrate sample sizes estimation using an existing breast cancer RNA-seq data.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , RNA-Seq/estatística & dados numéricos , RNA/genética , Humanos , Funções Verossimilhança , Modelos Estatísticos , Tamanho da Amostra
16.
Phys Rev Lett ; 123(25): 250401, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922802

RESUMO

Classical dynamical systems close to a critical point are known to act as efficient sensors due to a strongly nonlinear response. We explore such systems in the quantum regime by modeling a quantum version of a driven van der Pol oscillator. We find the classical response survives down to one excitation quantum. At very weak drives, genuine quantum features arise, including diverging and negative susceptibilities. Further, the linear response is greatly enhanced by using a strong incoherent pump. These results are largely generic and can be probed in current experimental platforms suited for quantum sensing.

17.
Phys Rev Lett ; 121(9): 090401, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230907

RESUMO

We study the topological properties of one-dimensional systems undergoing unitary time evolution. We show that symmetries possessed both by the initial wave function and by the Hamiltonian at all times may not be present in the time-dependent wave function-a phenomenon which we dub "dynamically induced symmetry breaking." This leads to the possibility of a time-varying bulk index after quenching within noninteracting gapped topological phases. The consequences are observable experimentally through particle transport measurements. With reference to the entanglement spectrum, we explain how the topology of the wave function can change out of equilibrium, both for noninteracting fermions and for symmetry-protected topological phases protected by antiunitary symmetries.

18.
PLoS One ; 13(8): e0201813, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089167

RESUMO

Breast cancer (BC) is increasing in incidence and resistance to treatment worldwide. The challenges in limited therapeutic options and poor survival outcomes in BC subtypes persist because of its molecular heterogeneity and resistance to standard endocrine therapy. Recently, high throughput RNA sequencing (RNA-seq) has been used to identify biomarkers of disease progression and signaling pathways that could be amenable to specific therapies according to the BC subtype. However, there is no single generally accepted pipeline for the analysis of RNA-seq data in biomarker discovery due, in part, to the needs of simultaneously satisfying constraints of sensitivity and specificity. We proposed a combined approach using gene-wise normalization, UQ-pgQ2, followed by a Wald test from DESeq2. Our approach improved the analysis based on within-group comparisons in terms of the specificity when applied to publicly available RNA-seq BC datasets. In terms of identifying differentially expressed genes (DEGs), we combined an optimized log2 fold change cutoff with a nominal false discovery rate of 0.05 to further minimize false positives. Using this method in the analysis of two GEO BC datasets, we identified 797 DEGs uniquely expressed in triple negative BC (TNBC) and significantly associated with T cell and immune-related signaling, contributing to the immunotherapeutic efficacy in TNBC patients. In contrast, we identified 1403 DEGs uniquely expressed in estrogen positive and HER2 negative BC (ER+HER2-BC) and significantly associated with eicosanoid, notching and FAK signaling while a common set of genes was associated with cellular growth and proliferation. Thus, our approach to control for false positives identified two distinct gene expression profiles associated with these two subtypes of BC which are distinguishable by their molecular and functional attributes.


Assuntos
Neoplasias da Mama/metabolismo , Análise de Sequência de RNA/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo
19.
Phys Rev Lett ; 121(2): 027004, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085722

RESUMO

We develop an analytic theory for the recently demonstrated Josephson junction laser [M. C. Cassidy et al., Science 355, 939 (2017)SCIEAS0036-807510.1126/science.aah6640]. By working in the time-domain representation (rather than the frequency domain), a single nonlinear equation is obtained for the dynamics of the device, which is fully solvable in some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period set by the round-trip time of the resonant cavity.

20.
Nat Commun ; 9(1): 3054, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076297

RESUMO

The micromechanical mechanisms that underpin tuning and dynamic range compression in the mammalian inner ear are fundamental to hearing, but poorly understood. Here, we present new, high-resolution optical measurements that directly map sound-evoked vibrations on to anatomical structures in the intact, living gerbil cochlea. The largest vibrations occur in a tightly delineated hotspot centering near the interface between the Deiters' and outer hair cells. Hotspot vibrations are less sharply tuned, but more nonlinear, than basilar membrane vibrations, and behave non-monotonically (exhibiting hyper-compression) near their characteristic frequency. Amplitude and phase differences between hotspot and basilar membrane responses depend on both frequency and measurement angle, and indicate that hotspot vibrations involve longitudinal motion. We hypothesize that structural coupling between the Deiters' and outer hair cells funnels sound-evoked motion into the hotspot region, under the control of the outer hair cells, to optimize cochlear tuning and compression.


Assuntos
Cóclea/fisiologia , Audição/fisiologia , Movimento (Física) , Som , Vibração , Estimulação Acústica/métodos , Animais , Membrana Basilar/fisiologia , Feminino , Gerbillinae/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Mamíferos , Órgão Espiral/fisiologia , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...